

EVALUACIÓN DE BACHILLERATO PARA EL ACCESO A LA UNIVERSIDAD

LOMCE – JUNIO 2023

MATEMÁTICAS II

INDICACIONES

- 1. Debe escoger solo cuatro ejercicios entre los ocho de los que consta el examen.
- 2. Si realiza más de cuatro ejercicios solo se corregirán los cuatro primeros, según el orden que aparecen resueltos en el cuadernillo de examen.
- 3. Debe exponerse con claridad el planteamiento de la respuesta o el método utilizado para su resolución. Todas las respuestas deben ser razonadas.
- 4. Entre corchetes se indica la puntuación máxima de cada apartado.
- 5. No se permite el uso de calculadoras gráficas ni programables. Tampoco está permitido el uso de dispositivos con acceso a Internet.

Ejercicio 1 [2,5 PUNTOS]

Considere el sistema de ecuaciones

$$\begin{cases} 2x + 3y + z = -1 \\ x - y + z = a \\ -x + y - 2z = -3 \end{cases}$$

dado en función del parámetro $a \in \mathbb{R}$.

- 1) [1,25 PUNTOS] Determine para qué valores de a el sistema es compatible.
- 2) [1,25 PUNTOS] Dado a=4, resuelva el sistema anterior si es posible.

Ejercicio 2 [2,5 PUNTOS]

Considere la función $f(x) = \frac{x^2 - x + 2}{x}$.

- 1) [0,5 PUNTOS] Determine el conjunto de puntos de discontinuidad de f(x).
- 2) [1 PUNTO] Determine los intervalos de crecimiento y decrecimiento de f(x).
- 3) [1 PUNTO] Determine si f(x) tiene asíntota(s). En caso afirmativo, calcúlela(s).

Ejercicio 3 [2,5 PUNTOS]

Calcule las ecuaciones de las rectas de los lados de un triangulo que tiene como vertices a los puntos A = (0,0,1), B = (4,1,2) y C = (3,4,3).

Ejercicio 4 [2,5 PUNTOS]

En cierta región, el 72% de las mujeres vive al menos 71 años y el 52% vive al menos 80 años. Si una mujer determinada de esa región tiene 71 años, ¿cuál es la probabilidad de que vaya a vivir al menos hasta los 80 años?

Ejercicio 5 [2,5 PUNTOS]

Considere la matriz

$$A = \left(\begin{array}{ccc} 1 & -1 & a \\ 2 & 0 & 3 \\ 2 & 1 & -1 \end{array}\right)$$

en función del parámetro $a \in \mathbb{R}$.

- 1) [0,5] PUNTOS Calcule el determinante de A en función del parámetro a.
- 2) [0,75 PUNTOS] Calcule el rango de A en función del parámetro a.
- 3) [0,5] PUNTOS Determine para qué valores de a la matriz A tiene inversa.
- **4)** [0,75 PUNTOS] Sea B el conjunto de los $a \in \mathbb{R}$ tales que A tiene inversa. Calcule la inversa de A para los diferentes valores del parámetro $a \in B$.

Ejercicio 6 [2,5 PUNTOS]

Considere la función $f(x) = x^3 + 1$.

- 1) [0,5 PUNTOS] Calcule una primitiva de f(x).
- 2) [1 PUNTO] Calcule los puntos de inflexión de f(x) si los hubiera.
- 3) [1 PUNTO] Calcule el área del recinto limitado por f(x), el eje OX de abscisas y las rectas x = 1 y x = 2.

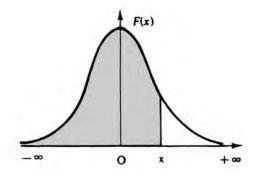
Ejercicio 7 [2,5 PUNTOS]

Considere los planos

$$\pi_1 : 2x - 3y + 5z = a$$

$$\pi_2 : bx + 3y - 5z = 4$$

en función de los parámetros $a, b \in \mathbb{R}$. Determine si es posible asignar algún valor a los parámetros a y b para que los planos π_1 y π_2 :


- 1) [0,5 PUNTOS] Sean coincidentes. En caso afirmativo de un valor para a y b.
- 2) [1 PUNTO] Sean paralelos. En caso afirmativo de un valor para a y b.
- 3) [1 PUNTO] Se corten en una recta. En caso afirmativo de un valor para a y b.

Ejercicio 8 [2,5 PUNTOS]

Sean A y B dos sucesos independientes asociados a un experimento aleatorio con P(A) = 0, 5 y P(B) = 0, 25.

- 1) [0,5 PUNTOS] Calcule $P(A \cup B)$.
- 2) [0,5 PUNTOS] Calcule $P(A^c)$ y $P(B^c)$, donde A^c y B^c denotan el suceso contrario de A y de B respectivamente.
- 3) [1 PUNTO] Razone si A^c y B^c son independientes.
- 4) [0,5 PUNTOS] Calcule $P(A^c \cup B^c)$.

$$F(x) = p(X \le x) = \int_{-\infty}^{x} \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2}t^{2}} dt$$

	1									
X	0.00	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09
0.0	.5000	.5040	.5080	.5120	.5160	.5199	.5239	.5279	.5319	.5359
0.1	.5398	.5438	.5478	.5517	.5557	.5596	.5636	.5675	.5714	.5753
0.2	.5793	.5832	.5871	.5910	.5948	.5987	.6026	.6064	.6103	.6141
0.3	.6179	.6217	.6255	.6293	.6331	.6368	.6406	.6443	.6480	.6517
0.4	.6554	.6591	.6628	.6664	.6700	.6736	.6772	.6808	.6844	.6879
0.5	.6915	.6950	.6985	.7019	.7054	.7088	.7123	.7157	.7190	.7224
0.6	.7257	.7291	.7324	.7357	.7389	.7422	.7454	.7486	.7517	.7549
0.7	.7580	.7611	.7642	.7673	.7704	.7734	.7764	.7794	.7823	.7852
0.8	.7881	.7910	.7939	.7967	.7995	.8023	.8051	.8078	.8106	.8133
0.9	.8159	.8186	.8212	.8238	.8264	.8289	.8315	.8340	.8365	.8389
1.0	.8413	.8438	.8461	.8485	.8508	.8531	.8554	.8577	.8599	.8621
1.1	.8643	.8665	.8686	.8708	.8729	.8749	.8770	.8790	.8810	.8830
1.2	.8849	.8869	.8888	.8907	.8925	.8944	.8962	.8980	.8997	.9015
1.3	.9032	.9049	.9066	.9082	.9099	.9115	.9131	.9147	.9162	.9177
1.4	.9192	.9207	.9222	.9236	.9251	.9265	.9279	.9292	.9306	.9319
1.5	.9332	.9345	.9357	.9370	.9382	.9394	.9406	.9418	.9429	.9441
1.6	.9452	.9463	.9474	.9484	.9495	.9505	.9515	.9525	.9535	.9545
1.7	.9554	.9564	.9573	.9582	.9591	.9599	.9608	.9616	.9625	.9633
1.8	.9641	.9649	.9656	.9664	.9671	.9678	.9686	.9693	.9699	.9706
1.9	.9713	.9719	.9726	.9732	.9738	.9744	.9750	.9756	.9761	.9767
2.0	.9772	.9778	.9783	.9788	.9793	.9798	.9803	.9808	.9812	.9817
2.1	.9821	.9826	.9830	.9834	.9838	.9842	.9846	.9850	.9854	.9857
2.2	.9861	.9864	.9868	.9871	.9875	.9878	.9881	.9884	.9887	.9890
2.3	.9893	.9896	.9898	.9901	.9904	.9906	.9909	.9911	.9913	.9916
2.4	.9918	.9920	.9922	.9925	.9927	.9929	.9931	.9932	.9934	.9936
2.5	.9938	.9940	.9941	.9943	.9945	.9946	.9948	.9949	.9951	.9952
2.6	.9953	.9955	.9956	.9957	.9959	.9960	.9961	.9962	.9963	.9964
2.7	.9965	.9966	.9967	.9968	.9969	.9970	.9971	.9972	.9973	.9974
2.8	.9974	.9975	.9976	.9977	.9977	.9978	.9979	.9979	.9980	.9981
2.9	.9981	.9982	.9982	.9983	.9984	.9984	.9985	.9985	.9986	.9986
3.0	.9987	.9987	.9987	.9988	.9988	.9989	.9989	.9989	.9990	.9990
3.1	.9990	.9991	.9991	.9991	.9992	.9992	.9992	.9992	.9993	.9993
3.2	.9993	.9993	.9994	.9994	.9994	.9994	.9994	.9995	.9995	.9995
3.3	.9995	.9995	.9995	.9996	.9996	.9996	.9996	.9996	.9996	.9997
3.4	.9997	.9997	.9997	.9997	.9997	.9997	:9997	.9997	.9997	.9998
3.6	.9998	.9998	.9999	.9999	.9999	.9999	.9999	.9999	.9999	.9999